Artificial Intelligence and Games

SP.268 Spring 2010

Outline

 Complexity, solving games
 Knowledge-based approach (briefly)
e Search

— Chinese Checkers
* Minimax
 Evaluation function
* Alpha-beta pruning
— Go

* Monte Carlo search trees

Solving Games

* Solved game: game whose outcome can be
mathematically predicted, usually assuming
perfect play

* Ultra weak: proof of which player will win,
often with symmetric games and a strategy-
stealing argument

* Weak: providing a way to play the game to
secure a win or a tie, against any opponent
strategies and from the beginning of the game

* Strong: algorithm for perfect play from any
position, even if mistakes were made

Solved Games

Tic — Tac — Toe: draw forceable by either player

M,n,k —game: first-player win by strategy-
stealing; most cases weakly solved for k <=4,
some results known for k =5, draw for k> 8

Go: boards up to 4x4 strongly solved, 5x5 weakly
solved for all opening moves, humans play on
19x19 boards...still working on it

Nim: strongly solved for all configurations

Connect Four: First player can force a win, weakly
solved for boards where width + height < 16

Checkers: strongly solved, perfect play by both
sides leads to a draw

Game Complexity

State-space complexity: number of legal game
positions reachable from initial game position

Game tree size complexity: total number of
possible games that can be played

Decision complexity: number of leaf nodes in the
smallest decision tree that establishes the value
of the initial position

Game-tree complexity: number of leaf nodes in
the smallest full-width (all nodes at each depth)
decision tree that establishes the value of the
initial position; hard to even estimate

Computational complexity: as the game grows
arbitrarily large, such as if board grows to nxn

Knowledge-based method

In order of importance...

If there’s a winning move, take it

If the opponent has a winning move, take it
Take the center square over edges and corners
Take any corners over edges

Take edges if they’re the only thing available

2N
J .| l '|
O @
o e '\»__/"
. - 7-7"—'77 —— e l
'_/" '\._.I S = R 2 e
| J)
5 J \ J
e 1 __/

,-/ ~N \ ™ 773 \ / ™~
| J j | |‘ [)

Al S

.._ /.. .

 White — human; black -- computer

Chinese Checkers

* Originated from a game called Halma,
invented in 1883 or 1884, first
marketed as Stern-Halma (Star
Halma) in Germany

e Named “Chinese Checkers” for better
marketing in the United States

 2-6players
e Star-shaped board with 6 points, 121
holes

* Goal: move all 10 marbles from your
beginning point of the star to the
opposite end

 Can move marble to adjacent hole, or
can jump (multiple contiguous jumps
are allowed) over another marble

* No captures (i.e. jumped pieces are
not removed)

Search Trees

* Nodes
represent
states of the
game

* Edges
represent
possible
transitions

e Each state can
be given a
value with an
evaluation
function

\
2 8

Minimax

Applied to two-player games with perfect
information

Each game state is an input to an evaluation
function, which assigns a value to that state

The value is common to both players, and one
person tries to minimize the value, while the
other tries to maximize it

To keep the tree size tractable, could limit
search depth or prune branches

End-of-game detection at end of every turn

Chinese Checkers Evaluation Function

* Evaluate the situation and decide which
moves are best.

e QOutput of the evaluation function should be
common to both players

* |deas for criteria?

Chinese Checkers Evaluation Function

* Moving marbles a long distance via a
sequence of jumps are best;

* Marbles can move laterally, but is that
efficient? - put more weight on moves that
emphasize the middle of the board;

* Trailing marbles that cannot hop over
anything take really long to catch up = put
more weight on moves that get rid of trailing
marbles;

Alpha-beta pruning

5 n

/é * R §$ @\Q\
SEEE T Sbbbh o

Generalization

* Think about criteria for a good evaluation
function of the game state

e Start with the basic mini-max algorithm, and
apply optimizations

* Play around with search order in alpha-beta
pruning

* Look into other more efficient algorithms such
as...

Monte Carlo tree search — computer Go

For each potential move, playing out
thousands of games at random on the
resulting board

Positions evaluated using some game score or
win rate out of all the hypothetical games

Move that leads to the best set of random
games is chosen

Requires little domain knowledge or expert
iInput

Tradeoff is that some times can do tactically
dumb things, so combined with

UCT -- 2006
* “Upper Confidence bound applied to Trees”
e Extension of Monte Carlo Tree Search (MCTS)

* First few moves are selected by some tree
search and evaluation function

* Rest played out in random like in MCTS
* Important or better moves are emphasized

Side question...

 What’s the
shortest
possible
game of

Chinese
Checkers?

* Part of a set
of army-
moving
problems by
Martin
Gardner

