
Artificial Intelligence and Games

SP.268 Spring 2010



Outline
• Complexity, solving games

• Knowledge-based approach (briefly)

• Search

– Chinese Checkers

• Minimax

• Evaluation function

• Alpha-beta pruning 

– Go

• Monte Carlo search trees



Solving Games
• Solved game: game whose outcome can be 

mathematically predicted, usually assuming 
perfect play

• Ultra weak: proof of which player will win, 
often with symmetric games and a strategy-
stealing argument 

• Weak: providing a way to play the game to 
secure a win or a tie, against any opponent 
strategies and from the beginning of the game

• Strong: algorithm for perfect play from any 
position, even if mistakes were made



Solved Games
• Tic – Tac – Toe: draw forceable by either player

• M,n,k – game: first-player win by strategy-
stealing; most cases weakly solved for k <= 4, 
some results known for k = 5, draw for k > 8

• Go: boards up to 4x4 strongly solved, 5x5 weakly 
solved for all opening moves, humans play on 
19x19 boards…still working on it

• Nim: strongly solved for all configurations

• Connect Four: First player can force a win, weakly 
solved for boards where width + height < 16

• Checkers: strongly solved, perfect play by both 
sides leads to a draw



Game Complexity
• State-space complexity: number of legal game 

positions reachable from initial game position
• Game tree size complexity: total number of 

possible games that can be played
• Decision complexity: number of leaf nodes in the 

smallest decision tree that establishes the value 
of the initial position

• Game-tree complexity: number of leaf nodes in 
the smallest full-width (all nodes at each depth) 
decision tree that establishes the value of the 
initial position; hard to even estimate

• Computational complexity: as the game grows 
arbitrarily large, such as if board grows to nxn



Knowledge-based method
In order of importance…

1. If there’s a winning move, take it

2. If the opponent has a winning move, take it

3. Take the center square over edges and corners

4. Take any corners over edges

5. Take edges if they’re the only thing available

• White – human; black -- computer



Chinese Checkers

• Originated from a game called Halma, 
invented in 1883 or 1884, first 
marketed as Stern-Halma (Star 
Halma) in Germany

• Named “Chinese Checkers” for better 
marketing in the United States

• 2-6 players
• Star-shaped board with 6 points, 121 

holes
• Goal: move all 10 marbles from your 

beginning point of the star to the 
opposite end

• Can move marble to adjacent hole, or 
can jump (multiple contiguous jumps 
are allowed) over another marble

• No captures (i.e. jumped pieces are 
not removed)



• Nodes 
represent 
states of the 
game

• Edges 
represent 
possible 
transitions

• Each state can 
be given a 
value with an 
evaluation 
function

Search Trees



Minimax
• Applied to two-player games with perfect 

information

• Each game state is an input to an evaluation 
function, which assigns a value to that state

• The value is common to both players, and one 
person tries to minimize the value, while the 
other tries to maximize it

• To keep the tree size tractable, could limit 
search depth or prune branches

• End-of-game detection at end of every turn



Chinese Checkers Evaluation Function
• Evaluate the situation and decide which 

moves are best.

• Output of the evaluation function should be 
common to both players

• Ideas for criteria?



Chinese Checkers Evaluation Function
• Moving marbles a long distance via a 

sequence of jumps are best;

• Marbles can move laterally, but is that 
efficient?  put more weight on moves that 
emphasize the middle of the board;

• Trailing marbles that cannot hop over 
anything take really long to catch up  put 
more weight on moves that get rid of trailing 
marbles;



Alpha-beta pruning



Generalization
• Think about criteria for a good evaluation 

function of the game state

• Start with the basic mini-max algorithm, and 
apply optimizations

• Play around with search order in alpha-beta 
pruning

• Look into other more efficient algorithms such 
as…



Monte Carlo tree search – computer Go
• For each potential move, playing out 

thousands of games at random on the 
resulting board

• Positions evaluated using some game score or 
win rate out of all the hypothetical games

• Move that leads to the best set of random 
games is chosen

• Requires little domain knowledge or expert 
input

• Tradeoff is that some times can do tactically 
dumb things, so combined with 



UCT -- 2006
• “Upper Confidence bound applied to Trees”

• Extension of Monte Carlo Tree Search (MCTS)

• First few moves are selected by some tree 
search and evaluation function

• Rest played out in random like in MCTS

• Important or better moves are emphasized 



Side question…

• What’s the 
shortest 
possible 
game of 
Chinese 
Checkers?

• Part of a set 
of army-
moving 
problems by 
Martin 
Gardner


